Simulation of Summer Monsoon Climate over East Asia with an NCAR Regional Climate Model

1994 ◽  
Vol 122 (10) ◽  
pp. 2331-2348 ◽  
Author(s):  
Yongqiang Liu ◽  
Filippo Giorgi ◽  
Warren M. Washington
2011 ◽  
Vol 7 (2) ◽  
pp. 841-886
Author(s):  
H. Tang ◽  
A. Micheels ◽  
J. Eronen ◽  
M. Fortelius

Abstract. The Late Miocene (11.6–5.3 Ma) is a crucial period for the Asian monsoon evolution. However, the spatiotemporal changes of the Asian monsoon system in the Late Miocene are still ambiguous, and the mechanisms responsible for these changes are debated. Here, we present a simulation of the Asian monsoon climate (0 to 60° N and 50 to 140° E) in the Tortonian (11–7 Ma) using the regional climate model CCLM3.2. We employ relatively high spatial resolution (1° × 1°) and adapt the physical boundary conditions such as topography, land-sea distribution and vegetation in the regional model to represent the Late Miocene. As climatological forcing, the output of a Tortonian run with a fully-coupled atmosphere-ocean general circulation model is used. Our results show a stronger-than-present E-Asian winter monsoon wind in the Tortonian, as a result of the enhanced mid-latitude westerly wind of our global forcing and the lowered northern Tibetan Plateau in the regional model. The summer monsoon circulation is generally weakened in our regional Tortonian run compared to today. However, the changes of summer monsoon precipitation exhibit major regional differences. The precipitation decreases in N-China and N-India, but increases in S-China, the western coast and the southern tip of India. This can be attributed to the combined effect of both the regional topographical changes and the other forcings related to our global model. The spread of the dry summer conditions over N-China and NW-India further implies that the monsoonal climate may not be fully established over these regions in the Tortonain. Compared with the global model, the high resolution regional model highlights the spatial differences of the Asian monsoon climate in the Tortonian, and better characterizes the convective activity and its response to topographical changes. It therefore provides a useful and compared to global models complementary tool to improve our understanding of the Asian monsoon evolution in the Late Miocene.


Sign in / Sign up

Export Citation Format

Share Document